Composite
Chaperons

Part:BBa_K1462370:Design

Designed by: Ye Peng & Junjie Zhang   Group: iGEM14_SCUT   (2014-10-10)

pTEF2+GroES+tADH1+pTEF2+GroEL+tADH1


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


Design Notes

Functional expression of RuBisCo would be strongly stimulated in the presence of its chaperons. Compared with  the endogenous chaperon couple of S.cerevisiae, Hsp60/Hsp10, existing in mitochondrial matrix, EroGL/EroGS, two E.coli protein-folding chaperones, are much more efficient since RuBisCo expression requires their activity in the cytosol.

Figure 1 . The schematic of mechanism of the molecular chaperons GroES and GroEL. Firstly, an ATP binds with GroEL and the ATP-GroEL immediately captures the other unit GroES and there comes the GroEL-GroES-ATP complex.With the help of the complex, the unfolded RuBisCo protein can then properly fold and make a difference in our project.


Source

EroGL and EroGS are two E.coli protein-folding chaperons. We got pTEF2 and tADH1 from kits, GroEL and GroES from a synthesis company.


References

Víctor Guadalupe-Medina, H Wouter Wisselink, Marijke AH Luttik, et al. : Carbon dioxide fixation by Calvin-Cycle enzymes improves ethanol yield in yeast. Biotechnology for Biofuels 2013 6:125.